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1. Introduction

We first review some notions from the well-studied theory of patterns in (linear) 
permutations. More information on this topic can be found in the texts of Bóna [8], 
Sagan [36], or Stanley [38,39]. Let N be the nonnegative integers. If m, n ∈ N then 
we define [m, n] = {m, m + 1, . . . , n} which we abbreviate to [n] = [1, n] when m = 1. 
Consider the symmetric group Sn of all permutations π = π1π2 . . . πn of [n] written in 
one-line notation. We call n the length of π and write |π| = n. We will sometimes put 
commas between the elements of π for readability. We say that two sequences of distinct 
integers π = π1 . . . πk and σ = σ1 . . . σk are order isomorphic, written π ∼= σ, whenever 
πi < πj if and only if σi < σj . If σ ∈ Sn and π ∈ Sk then σ contains π as a pattern if 
there is a subsequence σ′ of σ with |σ′| = k and σ′ ∼= π. If no such subsequence exists 
then σ avoids π. We use the notation

Avn(π) = {σ ∈ Sn | σ avoids π}

for the avoidance class of π. For example σ = 42351 contains the pattern π = 3241
because of the subsequence 4251 among others. But it avoids 1234 because it has no 
increasing subsequence of length 4. One can extend this notion to sets of permutations 
Π by letting

Avn(Π) = {σ ∈ Sn | σ avoids all π ∈ Π} =
⋂
π∈Π

Avn(π).

A famous theorem of Erdős and Szekeres [26] can be stated in terms of pattern con-
tainment and avoidance. Let

ιn = 12 . . . n

and

δn = n . . . 21

be the increasing and decreasing permutations of length n, respectively.

Theorem 1.1 ([26]). Suppose m, n ∈ N. Then any σ ∈ Smn+1 contains either ιm+1 or 
δn+1. This is the best possible in that there exist permutations in Smn which avoid both 
ιm+1 and δn+1. �

The diagram of π ∈ Sn is the collection of points (i, πi) in the first quadrant of the 
Cartesian plane. The graphical representation of π = 42351 is given on the left in Fig. 1. 
It follows that we can act on π with the dihedral group of the square

D4 = {ρ0, ρ90, ρ180, ρ270, r0, r1, r−1, r∞}
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Fig. 1. The graph of 42351 on the left and of [42351] on the right.
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Fig. 2. The diagram of 132 (left) and 132〈σ1, σ2, σ3〉 (right).

where ρθ is rotation counterclockwise through θ degrees and rm is reflection in a line of 
slope m. We wish to write some of these rigid motions in terms of the one-line notation 
for π = π1π2 . . . πn. Reflection in a vertical line gives the reversal of π which is

πr = πn . . . π2π1.

Similarly, reflection in a horizontal line results in the complement of π

πc = n + 1 − π1, n + 1 − π2, . . . , n + 1 − πn.

Combining these two operations gives rotation by 180 degree or reverse complement

πrc = n + 1 − πn, . . . , n + 1 − π2, n + 1 − π1.

We apply any of these operations to sets of permutations by applying them to each 
element of the set.

We can use diagrams to inflate permutations. If we are given π = π1π2 . . . πn ∈ Sn

and permutations σ1, σ2, . . . , σn then the inflation of π by the σi is the permutation 
π〈σ1, σ2, . . . , σn〉 whose diagram is obtained from that of π by replacing each vertex 
(i, πi) by a copy of σi. For example, given π = 132 and σ1, σ2, σ3 then a schematic of the 
diagram of 132〈σ1, σ2, σ3〉 is given on the right in Fig. 2. More concretely, if σ1 = 21, 
σ2 = 1, and σ3 = 213 then
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132〈σ1, σ2, σ3〉 = 216435.

We say that patterns π and π′ are Wilf equivalent, written π ≡ π′, if # Avn(π) =
# Avn(π′) for all n ∈ N where the hash symbol denotes cardinality. This definition 
extends in the obvious way to sets of patterns. Note that if π and π′ are Wilf equivalent 
then both must be in the same Sn. It is easy to see that if φ ∈ Dn then π ≡ φ(π) and so 
these are called trivial Wilf equivalences. As is well known, all elements of S3 are Wilf 
equivalent.

Theorem 1.2. If π ∈ S3 then

# Avn(π) = Cn

where Cn = 1
n+1

(2n
n

)
it the nth Catalan number. �

Trivial Wilf equivalence carries over to sets Π of permutations. Simion and Schmidt [37]
determined all Wilf equivalences among the Avn(Π) for all Π ⊆ S3.

A permutation statistic is a map st : �n≥0Sn → S where S is some set. Many statistics 
are based on the descent set statistic which is

Desπ = {i | πi > πi+1}.

The elements i ∈ Desπ are called descents and if πi < πi+1 then i is called an ascent. 
Four famous statistics related to Des are the descent number statistic

desπ = # Desπ

the major index statistic

majπ =
∑

i∈Desπ
i,

the inversion statistic

inv π = #{(i, j) | i < j and πi > πj},

and the exceedance statistic

excπ = #{i | π(i) > i}.

Let st be a statistic whose range is N and q be a variable. If Π is a set of patterns then 
its avoidance class has a corresponding generating function

F st
n (Π) = F st

n (Π; q) =
∑

qstσ.

σ∈Avn(Π)
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Say that Π and Π′ are st-Wilf equivalent and write Π 
st≡ Π′ if F st

n (Π) = F st
n (Π′) for 

all n ≥ 0. Clearly st-Wilf equivalence implies Wilf equivalence. The maj- and inv-Wilf 
equivalence classes for Π ⊆ S3 were determined by Dokos, Dwyer, Johnson, Sagan, and 
Selsor [17].

If π = π1π2 . . . πn ∈ Sn then the corresponding cyclic permutation is the set of all 
rotations of π, denoted by

[π] = {π1π2 . . . πn, π2 . . . πnπ1, . . . , πnπ1 . . . , πn−1}.

These are sometimes called horizontal rotations in the literature to distinguish them from 
vertical rotations of the diagram [24,25]. Our notion of cyclic permutations has appeared 
in the literature under different names: Callan [10] calls them “circular permutations”, 
and Vella [41] calls them “cyclic arrangements”. We also note that some authors use 
the term “cyclic permutation” to refer instead to a linear permutation whose disjoint 
cycle decomposition is a single cycle, and study pattern avoidance in this setting [2,21]. 
Continuing our example from the beginning of the section,

[42351] = {42351, 23514, 35142, 51423, 14235}.

If necessary, we will call permutations from Sn linear to distinguish them from their 
cyclic cousins. We also use square brackets to denote cyclic analogues of objects defined 
in the linear case. For example, [Sn] is the set of all cyclic permutations of length 
n. We say a cyclic permutation [σ] contains [π] as a pattern if there is some rotation 
σ′ of σ which contains π linearly. Otherwise [σ] avoids [π]. In our perennial example, 
even though 42351 avoids 1234 we have that [42351] contains [1234] since the rotation 
14235 has the copy 1235 of this pattern. Given a set [Π] of cyclic patterns, the cyclic 
avoidance class Avn[Π] is defined as expected. Note that when using a specific set of cyclic 
permutations, the square brackets will be put around the permutations themselves, for 
example, Avn([π], [π′]).

One can also put certain restrictions on the form of a copy of a pattern. A vincu-
lar pattern [π] is one where certain cyclically adjacent elements of π are required to be 
cyclically adjacent in any copy. In this case, the adjacent elements are underlined. For 
example, [42351] contains the vincular pattern [1324] because the copy [1425] has the 
three corresponding elements cyclically adjacent. However, it avoids [1324] because nei-
ther of the two copies of [1324] have the prescribed adjacencies. Call a vincular pattern of 
the form [π1 . . . πk] consecutive. See Elizalde’s survey article [20] for further information 
about consecutive pattern containment and avoidance in the linear case.

Vella [41] is the first person, to our knowledge, to consider (nonvincular) cyclic pattern 
avoidance and calculate # Avn[1243] and # Avn[1324]. Callan [10] determined # Avn[π]
for all [π] ∈ [S4]. Gray, Lanning, and Wang continued work in this direction consider-
ing cyclic packing of patterns [27] and patterns in colored cyclic permutations [28]. The 
study of vincular patterns in the linear case was originated by Babson and Steingríms-
son [3]. More recently, and inspired by the present work, Li [31] studied avoiding sets of 



6 R. Domagalski et al. / Advances in Applied Mathematics 135 (2022) 102320
vincular patterns of length three and four. One of the cases left open by Li was resolved
by Mansour and Shattuck [33]. Menon and Singh [35] have also built on our work by 
considering avoidance of a pair of patterns, one of length 4 and the other of length k ≥ 4.

A cyclic version of the Erdős–Szekeres Theorem was proved by Czabarka and 
Wang [13] and will be useful for us in the sequel.

Theorem 1.3 ([13]). If m, n ∈ N then any [σ] ∈ [Smn+2] contains either [ιm+2] or [δn+2]. 
This is the best possible in that there exist permutations in [Smn+1] which avoid both 
[ιm+2] and [δn+2]. �

The graph of a cyclic permutation [π] is obtained by embedding the graph of π on a 
cylinder. This is indicated on the right in Fig. 1 by identifying the two dotted arrows. 
Cyclic Wilf equivalence has the obvious definition. But note that now there are fewer 
trivial cyclic Wilf equivalences since we need the chosen group element to preserve the
cylinder, not just the square. So the only trivial equivalences are

[π] ≡ [πr] ≡ [πc] ≡ [πrc]. (1)

Certain linear permutation statistics have obvious cyclic analogues. For example, if 
π ∈ Sn then its cyclic descent number is

cdes[π] = #{i | πi > πi+1 where subscripts are taken modulo n}.

Note that this is well defined because the cardinality does not depend on which repre-
sentative of [π] is chosen. To illustrate, π = 23514 has cyclic descents at indices 3 and 
5 so cdes[π] = 2. The corresponding generating function F cdes

n [Π] where [Π] is a set of 
cyclic permutations, and cdes-Wilf equivalence should now need no definition. Note that 
cdes is another form of the exceedance statistic on linear permutations. In particular, if 
π = π1π2 . . . πn then

cdes[π] = exc(πn, . . . , π2, π1)

where (πn, πn−1 . . . , π1) is cycle notation for the linear permutation which, as a function, 
sends πi to πi−1 for all i modulo n.

The rest of this paper is organized as follows. Section 2 will extend Callan’s work by 
enumerating Avn[Π] for [Π] ⊂ [S4] consisting of two or more patterns. One of our princi-
ple proof techniques will be the use of generating trees. In Section 3 we will compute the 
cyclic descent generating functions for [Π] ⊂ [S4], thus refining the previous enumera-
tions. Section 4 will be devoted to the study of consecutive patterns whose initial element 
is 1. We will show that there is a simple relationship between the generating functions 
counting the number of occurrences of a consecutive pattern in linear permutations and 
its cyclic analogue. This will be used to resolve two conjectures in an earlier version of 
this article which were also proved in the aforementioned paper of Li [31]. We will end 
with a section of open problems and additional comments.
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Table 1
Wilf equivalence classes and cardinalities of Avn[Π] for certain [Π] and n ≥ 5.

[Π] # Avn[Π]
{[1234]}, {[1432]} 2n + 1 − 2n −

(n
3
)

{[1243]}, {[1342]} 2n−1 − n + 1
{[1324]}, {[1423]} F2n−3

{[1234], [1243]}, {[1234], [1324]}, {[1234], [1342]}, {[1243], [1432]} 2(n − 2)
{[1342], [1432]}, {[1423], [1432]}
{[1234], [1423]}, {[1243], [1324]}, {[1243], [1423]}, {[1324], [1342]} 1 +

(n−1
2

)
{[1324], [1432]}, {[1342], [1423]}
{[1234], [1432]} 0
{[1243], [1342]} 4
{[1324], [1423]} 2n−2

{[1234], [1243], [1324]}, {[1234], [1324], [1342]}, {[1243], [1324], [1342]} 3
{[1243], [1342], [1423]}, {[1243], [1423], [1432]}, {[1342], [1423], [1432]}
{[1234], [1243], [1342]}, {[1243], [1342], [1432]} 2
{[1234], [1243], [1423]}, {[1234], [1324], [1423]}, {[1234], [1342], [1423]} n − 1
{[1243], [1324], [1423]}, {[1243], [1324], [1432]}, {[1324], [1342], [1423]}
{[1324], [1342], [1432]}, {[1324], [1423], [1432]}
{[1234], [1243], [1432]}, {[1234], [1324], [1432]} 0
{[1234], [1342], [1432]}, {[1234], [1423], [1432]}
{[1234], [1243], [1324], [1342]}, {[1243], [1342], [1423], [1432]} 1
{[1234], [1243], [1324], [1423]}, {[1234], [1243], [1342], [1423]} 2
{[1234], [1324], [1342], [1423]}, {[1243], [1324], [1342], [1423]}
{[1243], [1324], [1342], [1432]}, {[1243], [1324], [1423], [1432]}
{[1324], [1342], [1423], [1432]}
{[1234], [1243], [1324], [1342], [1423]}, {[1243], [1324], [1342], [1423], [1432]} 1

2. Pattern avoidance for nonsingleton sets

In this section we will enumerate Avn[Π] for all [Π] ⊂ [S4] with #[Π] ≥ 2. Any cyclic 
Wilf equivalences stated without proof are trivial. We will collect our results, as well as 
those of Callan, in Table 1.

Let us first mention the simplest singleton avoidance classes where [π] ∈ [Sk] for 
k < 4. In [S2] there is only one cyclic permutation [12] and it is easy to see that every 
[σ] of length at least 2 contains it. In [S3] there are only the patterns [123] and [321], 
and these are only avoided by [δn] and [ιn], respectively.

Callan [10] enumerated Avn[π] for any given [π] ∈ [S4]. Recall the version of the 
Fibonacci numbers defined by F1 = F2 = 1 and Fn = Fn−1 +Fn−2 for n ≥ 3. Unlike the 
case of linear permutations in S3, there are no nontrivial Wilf equivalences.

Theorem 2.1 ([10]). For n ≥ 2 we have

# Avn[1234] = # Avn[1432] = 2n + 1 − 2n−
(
n

3

)
,

# Avn[1243] = # Avn[1342] = 2n−1 − n + 1,

# Avn[1324] = # Avn[1423] = F2n−3. �
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In presenting the enumerations for doubletons, we make the following conventions to 
facilitate locating a given result. All cyclic patterns will be listed starting with 1. And 
all sets of cyclic patterns will be given in lexicographic order. We will also use terms like 
“just before” or “just after” in [σ] to refer the left-to-right order on the cylinder of a cyclic 
permutation in the form of Fig. 1. For example, in [σ] = [42351] the 5 comes just before 
1 and the 4 just after. We also say that an element x is between y and z if it is in the sub-
sequence of [σ] traversed going left-to-right around the cylinder from y to z. Continuing 
our example, between 2 and 5 we have 3, while between 5 and 2 we have 1 and 4.

One of our tools will be generating trees. To the best of our knowledge, these trees 
were introduced by Chung, Grahamm, Hoggatt, and Kleiman [12] for studying Baxter 
permutations. Since then, they have become an integral technique in the theory of pattern 
avoidance [4,9,30,42,43]. The generating tree for an avoidance class Av[Π], denoted by 
T [Π], has as its root the permutation [12]. The children of any [σ] ∈ Avn[Π] are all the 
[σ′] ∈ Avn+1[Π] which can be formed by inserting n + 1 into one of the spaces of [σ]. A 
space, also called a site, where insertion of n +1 produces a permutation of the avoidance 
class is called active while the other spaces are inactive. A useful observation is that if a 
space is inactive it must be because inserting n + 1 there results in copy of a forbidden 
pattern [π] where n +1 plays the role of the largest element of π. Once we have picked a 
representative σ = σ1σ2 . . . σn for [σ] we will label the spaces as 1, 2, . . . , n left to right 
where space i comes between σi and σi+1. The nodes for Avn[Π] will be said to be at 
level n in T [Π]. We call the number of children of a vertex its degree which is denoted 
deg[σ]. Given d ∈ N, suppose that every cyclic permutation with deg[σ] = d has children 
of degrees c1, c2, . . . , cd. Then this is denoted by the production rule

(d) → (c1)(c2) . . . (cd).

There may be other nodes having some special characteristic X which always produces 
nodes having characteristics Y1, Y2, . . . , Yd which correspond to a production rule

(X) → (Y1)(Y2) . . . (Yd).

In particular, the characteristic of being the root of the tree is denoted in a production 
rule by (∗). We can also have production rules which mix numbers for degrees and letters 
for characteristics. If T [π] can be characterized by production rules, these can often be 
used to calculate # Avn[Π].

Theorem 2.2. We have

{[1234], [1243]} ≡ {[1234], [1342]} ≡ {[1243], [1432]} ≡ {[1342], [1432]}.

And for n ≥ 3

# Avn([1234], [1342]) = 2(n− 2).
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Proof. We claim that T = T ([1234], [1342]) has the following production rules

(∗) → (2)(2),

(1) → (1),

(2) → (1)(2).

Once these are proved then the enumeration follows easily since one can inductively show 
that, for n ≥ 3, level n consists of two nodes of degree 2 and 2(n − 3) nodes of degree 1.

It is easy to check the production rule at levels n = 2 and 3, so we assume that n ≥ 4
and also that [σ] ∈ Avn([1234], [1342]). First of all, note that the site before n is always 
active. For if it were not then the result [σ′] of inserting n + 1 would have a copy κ of 
one of the patterns containing n + 1. But n can not be in κ since neither of the patterns 
have 4 followed immediately in the cycle by 3. So replacing n + 1 by n in κ would give 
a forbidden pattern in [σ] which is a contradiction. Thus every [σ] at has at least one 
child. Also σ has at most two children. For suppose

σ′ = n + 1, ρ, n, τ

is the result of inserting n + 1 in σ. It follows that |ρ| ≤ 1 since if ρ ≥ 2 then [σ′] has a 
copy of either [4123] or [4213]. Thus n + 1 must be inserted either directly before n or 
two elements before n.

Now consider

δ = n, n− 1, . . . , 3, 2, 1, and ε = n, n− 1, . . . , 3, 1, 2. (2)

It is easy to check that both sites n and n − 1 are active in these permutations and 
so both have degree 2. It is also obvious that if one inserts n + 1 in site n in either 
permutation then one gets another permutation of the same form.

From what we have done, we can finish the proof if we show that deg[σ] = 2 implies 
[σ] = [δ] or [σ] = [ε]. Write

σ = nρm

where m is the last element of σ and ρ is everything between n and m. Since deg[σ] = 2, 
site n − 1 is active and inserting n + 1 there yields

σ′ = n, ρ, n + 1,m.

Then m ≤ 2 since otherwise [σ] contains a copy of [4123] or [4213] because n ≥ 4. In 
the case m = 1 we must have ρ decreasing. For if there is an ascent x < y in ρ then 
[σ′] contains [x, y, n + 1, 1] which is a copy of [2341], a contradiction. So in this case 
σ = δ. The other possibility is that m = 2. This forces the last element of ρ to be 1. 
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For if 1 is elsewhere and x is the last element of ρ then [σ′] contains [1, x, n + 1, 2] which 
is contradictory copy of [1342]. Similarly to the first case, one can now show that ρ is 
decreasing and so σ = ε as desired. �

Comparing our next result with the previous one will provide our first nontrivial Wilf 
equivalence.

Theorem 2.3. We have

{[1234], [1324]} ≡ {[1423], [1432]}.

And for n ≥ 3

# Avn([1234], [1324]) = 2(n− 2).

Proof. Let D stand for the decreasing permutation and E for the decreasing permutation 
with its largest two elements swapped. We consider the root [12] to be of type D. We 
will show that T = T ([1234], [1324]) has production rules

(1) → (1),

(D) → (D)(E),

(E) → (1)(1).

It follows by induction that level n ≥ 3 of T has a D, an E, and 2(n −3) nodes of degree 
one, proving the theorem.

The same demonstration as in the previous theorem shows that the site before n in 
any [σ] ∈ Avn([1234], [1324]) is active. So again, every such permutation has at least one 
child. Also, every [σ] has at most two children. Indeed, write

σ = 1σ2 . . . σn (3)

and put n + 1 in site i ≥ 3. Then 1, σ2, σ3, n + 1 is a copy of either 1234 or 1324, a 
contradiction.

Now consider permutations corresponding to D and E at level n

δ = 1, n, n− 1, n− 2, n− 3, . . . , 2 and ε = 1, n− 1, n, n− 2, n− 3, . . . , 2. (4)

It is easy to check that both sites 1 and 2 are active in δ, ε. So, by the previous paragraph, 
they both have degree 2. Furthermore, the two children of δ have the form D and E.

We will be done if we can show that [σ] having two children implies [σ] = [δ] or [ε]. 
Write σ as in (3). Since the active sites must be 1 and 2, and the site before n must be 
active, either σ2 = n or σ3 = n. If σ2 = n and there is an ascent x < y in the rest of the 
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permutation, then after inserting n + 1 in position 2 we have [x, y, n, n + 1] which is a 
copy of [1234], a contradiction. So in this case [σ] = [δ]. Alternatively, suppose σ3 = n. 
This forces σ2 = n − 1, since if σ2 = x < n − 1 then n − 1 comes after n. But inserting 
n + 1 in position 1 gives [x, n, n − 1, n + 1] which is a copy of [1324]. And similarly to 
the first case we see that the rest of σ is decreasing. The result is that [σ] = [ε]. This 
completes the proof. �
Theorem 2.4. We have

{[1234], [1423]} ≡ {[1324], [1432]}.

And for n ≥ 1

# Avn([1234], [1423]) = 1 +
(
n− 1

2

)
.

Proof. Suppose [σ] ∈ Avn([1234], [1423]) and write

σ = 1ρnτ (5)

where ρ and τ are the subsequences between 1 and n, and between n and 1, respectively. 
Now ρ and τ must be decreasing since [σ] avoids [1234] and [1423], respectively. Fur-
thermore, ρ must consist of consecutive integers since, if not, then we have x < y < z

such that 1zxny is a subsequence of σ. So [xnyz] is a copy of [1423] in [σ], which is a 
contradiction. Conversely, it is easy to check that if σ has the form (5) with ρ and τ
decreasing and ρ consecutive then [σ] ∈ Avn([1234], [1423]). So we have characterized 
the elements of this class.

To finish the enumeration, if ρ = ∅ there is one corresponding σ. But if ρ �= ∅ then 
choosing the smallest and largest element of ρ from the elements 2, 3, . . . , n −1 completely 
determines σ. Since these two elements could be equal, we are choosing 2 elements from 
n − 2 elements with repetition which is counted by 

(
n−1

2
)
. �

The following result follows immediately from Theorem 1.3

Theorem 2.5. We have

# Avn([1234], [1432]) = 0

for n ≥ 6. �
We now have, by comparison with Theorem 2.4, another nontrivial Wilf equivalence.

Theorem 2.6. We have

{[1243], [1324]} ≡ {[1243], [1423]} ≡ {[1324], [1342]} ≡ {[1342], [1423]}.
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And for n ≥ 1

# Avn([1324], [1342]) = 1 +
(
n− 1

2

)
.

Proof. Take [σ] ∈ Avn([1324], [1342]) and write σ as in (5). Then ρ is increasing since [σ]
avoids [1324]. And every element of ρ is smaller than every element of τ since [σ] avoids 
[1342]. To avoid a copy of one of the forbidden patterns containing the 1 of σ we must 
have that τ avoids 213 and 231. And to avoid a copy of [1324] where n plays the role 
of 4, it must be that τ avoids 132. The τ which avoid these three patterns are exactly 
those which are inflations of the form τ = 21〈δk, ιl〉 for some k, l ≥ 0 (see the chart on 
page 2773 of [17]). Absorbing the 1 and n of σ into ρ and τ , respectively, we see that

σ = 132〈ιj , δk, ιl〉 (6)

where j, k ≥ 1 and l ≥ 0. Again, it is not hard to check that for every σ of this form we 
have [σ] ∈ Avn([1324], [1342]).

To enumerate these σ, we distinguish two cases. If l ≥ 2 then picking the smallest 
and largest elements of the copy of ιl from 2, 3, . . . , n − 1 completely determines σ. So 
in this case there are 

(
n−2

2
)

choices. If l ≤ 1 then the copy of ιl can be appended to the 
copy of δk so that σ = 12〈ιj , δn−j〉. Since we must have 1 and n in the ascending and 
decreasing subsequences, there are now n − 1 choices. Adding the two counts given the 
desired result. �
Theorem 2.7. For n ≥ 4 we have

# Avn([1243], [1342]) = 4.

Proof. Take [σ] ∈ Avn([1243], [1342]) and write σ as in (5). Then ρ and τ can not both 
be nonempty. For if x ∈ ρ and y ∈ τ then 1xny is a copy of either 1243 or 1342.

Assume first that ρ = ∅ so that

σ = 1nτ. (7)

Then τ must be increasing or decreasing. For suppose it was neither. Then it would 
contain a copy of one of the patterns 132, 231, 213, or 312. In the first two cases this 
would give, together with the 1, a copy of 1243 or 1342 in σ. And in the last two cases, 
prepending n gives a copy of 4213 or 4312. Conversely, if σ is given by (7) with τ
increasing or decreasing then it is easy to verify that [σ] ∈ Avn([1243], [1342]).

Using the same ideas, one can also show that if τ = ∅ then one gets exactly two 
elements of Avn([1243], [1342]), of the form σ = 1ρn where ρ is either increasing or 
decreasing. Thus there are a total of four elements in the avoidance class. �
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Theorem 2.8. For n ≥ 3 we have

# Avn([1324], [1423]) = 2n−2.

Proof. Take [σ] ∈ Avn([1324], [1423]) and write

σ = nρ.

Now n − 1 either begins or ends ρ since otherwise 4132 or 4231 is a pattern in σ. One 
shows similarly that n −2 either begins or ends ρ with n −1 removed. Continuing in this 
manner, we see that there are 2 choices for the positions of n − 1, n − 2, . . . , 2. Checking, 
as usual, that all such permutations are actually in the avoidance set, the enumeration 
follows. �

For subsets of patterns Π ⊆ S4 with three or more permutations, the structure of 
the avoidance classes and corresponding enumeration can easily be derived by combining 
the appropriate results for avoiding 2-element subsets of Π. So we omit the details and 
merely summarize the results in Table 1.

3. Cyclic descent generating functions

We will now consider the generating function for the number of cyclic descents over 
various avoidance classes [Π] ⊂ [S4], starting with those defined by a single element. We 
will sometimes use the characterizations given by Callan [10] for these classes to facilitate 
our work, and use the abbreviation

Dn([Π]) = Dn([Π]; q) =
∑

σ∈Avn[Π]

qcdesσ

for the generating function.
To begin, we have a lemma showing that trivial Wilf equivalences also give simple 

relationships between the corresponding generating functions.

Lemma 3.1. For any [Π] we have

Dn([Π]r; q) = Dn([Π]c; q) = qnDn([π]; 1/q)

and

Dn([Π]rc; q) = Dn([Π]; q).

Proof. Reversing or complementing a permutation turns all cyclic descents into cyclic 
ascents and vice-versa. Translating this into generating functions gives the first displayed 
equalities. And the second displayed equation follows from the previous display. �
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Now consider the possible Dn([π]) for [π] ∈ [S4]. We begin with the simplest case.

Theorem 3.2. We have Dn([1423]; q) = qnDn([1324]; 1/q) where, for n ≥ 2,

Dn([1324]; q) =
n−1∑
k=1

(
n + k − 3
n− k − 1

)
qk.

Proof. We use Callan’s characterization of this avoidance class to obtain a recursion for 
Dn([1324]). If [σ] ∈ Avn([1324]) and n ≥ 3 then write σ = σ1σ2 . . . σn−1n. Let k be the 
index such that σk = n − 1. There are two cases.

If k = n −1 then σ = τ, n −1, n where [τ, n −1] ∈ Avn−1([1324]) and this is a bijection. 
Since cdes[σ] = cdes[τ, n − 1], this case contributes Dn−1([1324]) to the recursion.

If 1 ≤ k ≤ n − 2 then this forces

σ = 2314[ιk−1, 1, τ, 1]

for some τ such that [τn] avoids [1324]. Because of the extra descent caused by n − 1 we 
have cdes[σ] = 1 + cdes[τn]. So this case gives a contribution of 

∑n−2
k=1 qDn−k([1324]).

Putting everything together, we have

Dn([1324]) = Dn−1([1324]) +
n−2∑
k=1

qDn−k([1324]),

for n ≥ 3 and D2([1324]) = q. It is now a simple manner of manipulating binomial 
coefficients to show that the formula given in the theorem satisfies this initial value 
problem. �

For the next case, we will use a characterization of the class different from the one 
found by Callan. This will permit us to avoid the use of a recurrence.

Lemma 3.3. Suppose [σ] ∈ [Sn] and write σ = 1ρnτ . We have [σ] ∈ Avn([1342]) if and 
only if the following three conditions are satisfied:

(a) ρ and τ both avoid {213, 231},
(b) max ρ < min τ ,
(c) there is not both a descent in ρ and an ascent in τ .

Proof. For the forward direction, suppose [σ] ∈ Avn([1342]). Condition (a) is true since 
if either ρ or τ contains 213 then, together with n, we have that [σ] contains [2134]. 
Similarly, if either contains 231 then [σ] contains the forbidden pattern by prepending 
the 1. As far as (b), if there is y > x with y ∈ ρ and x ∈ τ then [1ynx] is a copy of 
[1342]. Finally for (c), if there were a descent in ρ and an ascent in τ then, because of 
(b), putting them together would again give a copy of the pattern to avoid.
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The converse is similar where one assumes that a copy of [1342] exists and then 
considers all the different intersections it could have with 1, ρ, n, and τ . We leave the 
details to the reader. �

In order to use this lemma, we will need a result about the ordinary descent statistic on 
linear permutations avoiding {123, 231}. The next result is a specialization of Proposition 
5.2 of the paper of Dokos, Dwyer, Johnson, Sagan, and Selsor [17] and so the proof is 
omitted.

Lemma 3.4 ([17]). We have

∑
σ∈Avn(213,231)

qdesσ = (1 + q)n−1. �

We need one last well-known definition. Call a polynomial f(q) =
∑n

k=0 akq
k of degree 

n symmetric if ak = an−k for all 0 ≤ k ≤ n. Note that f(q) of degree n is symmetric if 
and only if

qnf(1/q) = f(q). (8)

Theorem 3.5. We have Dn([1243]; q) = Dn([1342]; q) where, for n ≥ 2,

Dn([1342]; q) = 2q(1 + q)n−2 − q · 1 − qn−1

1 − q

is symmetric.

Proof. It is easy to prove from the explicit form of Dn([1342]) that it satisfies equation (8)
and so is symmetric. So once this is proved, the equality of the two generating functions 
follows from Lemma 3.1.

We adopt the notation of Lemma 3.3 and let σk = n where 2 ≤ k ≤ n. We will 
consider cases depending on whether ρ or τ is empty. If ρ = ∅ then by Lemma 3.3
(a) and Lemma 3.4 we have that the generating function for the possible linear τ is 
(1 + q)n−3. Also, cdes[σ] = 2 + des τ by the form of σ, so the contribution of such [σ] to 
Dn([1342]) is q2(1 + q)n−3. In an analogous way, we see that those [σ] with τ = ∅ yield 
q(1 + q)n−3. Adding these, we have a total of q(1 + q)n−2 so far.

We now assume that ρ, τ are both nonempty so that 3 ≤ k ≤ n − 1. By parts (b) and 
(c) of Lemma 3.3, either ρ must be an increasing subsequence of consecutive integers or 
τ must be a decreasing one. Using Lemma 3.4 again, we see that in the first subcase a 
contribution of q2(1 + q)n−k−1 is obtained. And in the second, taking into account the 
descents in τ , the contribution is qn−k+1(1 + q)k−3. However, these two subcases overlap 
when ρ is increasing and τ is decreasing. So we must subtract qn−k+1.
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Thus we get a grand total of

Dn([1342]) = q(1 + q)n−2 +
n−1∑
k=3

[q2(1 + q)n−k−1 + qn−k+1(1 + q)k−3 − qn−k+1].

Summing the geometric series and simplifying completes the proof. �
For the avoidance class of the increasing (or decreasing) pattern in [S4], we will need 

another concept. Given sequences ρ and τ of distinct integers, their shuffle set is

ρ� τ = {σ : |σ| = |ρ| + |τ | and both ρ, τ are subsequences of σ}.

For example,

12� 34 = {1234, 1324, 1342, 3124, 3142, 3412}.

In the statement of the next result we make the usual convention that 
(
n
k

)
= 0 if k > n.

Theorem 3.6. We have Dn([1234]; q) = qnDn([1432]; 1/q) where, for n ≥ 2,

Dn([1432]; q) = q + (2n−1 − n)q2 +
∑
j≥3

(
n

2j − 1

)
qj .

Proof. We use Callan’s description of the avoidance for [1234] translated by comple-
mentation to apply to [1432]. We are going to derive a recursion for Dn([1432]; q). If 
[σ] ∈ Sn[1432] then suppose σn = 1 and σk = 2 for some 1 ≤ k ≤ n − 1. There are three 
cases.

If k = 1 then there is a bijection between such [σ] and Avn−1[1432] obtained by 
removing 1 and taking the order isomorphic cyclic permutation on [n − 1]. Since 2
immediately follows 1 cyclically in [σ], the descent into 1 remains a descent after applying 
the map. So the contribution of this case is Dn−1([1432]; q).

Now suppose that 2 ≤ k ≤ n − 1 and write

σ = ρ2τ1,

where |ρ| = k − 1, |τ | = n − k − 1. As Callan proves, ρ must be increasing. So there 
are two more cases depending upon whether the elements of ρ are consecutive or not. 
Suppose first that they are not consecutive. In this case, τ must also be increasing so 
cdes[σ] = 2. To compute the number of such σ, note that once the elements of ρ have 
been picked from [3, n], all of σ is determined. The total number of nonempty subsets of 
this interval is 2n−2 − 1. And those which consist of consecutive integers are determined 
by their minimum and maximum element, which could be equal. So there are 

(
n−1

2
)

subsets to exclude. The contribution of this case is then
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(
2n−2 −

(
n− 1

2

)
− 1

)
q2.

Finally we consider the case when ρ �= ∅ is consecutive (and still increasing), say 
with minimum m + 1 and maximum M − 1. Note that if l = |τ | then 0 ≤ l ≤ n − 3. 
Callan shows that the possible τ are the elements of (34 . . .m) �(M, M+1, . . . , n). Since 
a permutation can be written as a shuffle in many ways, the same shuffle could occur 
for different ρ. So it will be convenient to color the elements of the second sequence 
by marking them with a hat. Thus the σ in this case are in bijection with colored 
shuffles (34 . . .m) � (M̂, ̂M + 1, . . . , ̂n). It will also be convenient to consider these as 
corresponding to the sequences 2τ by prepending a 2 to each shuffle and considering 2
as an uncolored element. Set S be the set of such sequences s = 2s2s3 . . . sl+1 where 
l, m, M are allowed to vary over all possible values. Note that if s corresponds to σ then 
desσ = 2 + des s. To compute des s, we consider the transition indices

Tr s = {i | si is colored and si+1 is not, or vice-versa}.

For example, if s = 236̂457̂8̂ then Tr s = {2, 3, 5}. It is easy to see that the map Tr :
S → 2[l], the range being all subsets of [l], is a bijection. Also, every other transition 
index of s starting with the second corresponds to a descent. So, using the round down 
function, des s = �# Tr s/2�. We can now complete this case using i = # Tr s to see that 
the contribution is

n−3∑
l=0

l∑
i=0

(
l

i

)
q�i/2	+2 =

n−3∑
i=0

q�i/2	+2
n−3∑
l=i

(
l

i

)

=
n−3∑
i=0

(
n− 2
i + 1

)
q�i/2	+2

= q2
∑
j≥0

[(
n− 2
2j + 1

)
+

(
n− 2
2j + 2

)]
qj

= q2
∑
j≥0

(
n− 1
2j + 2

)
qj .

Putting all the cases together we have

Dn([1432]; q) = Dn−1([1432]; q) + q2

⎡⎣2n−2 −
(
n− 1

2

)
− 1 +

∑
j≥0

(
n− 1
2j + 2

)
qj

⎤⎦ .

As usual, the routine verification that our desired formula satisfies this recursion and the 
initial condition is left to the reader. �
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We now turn to the cyclic descent polynomials for pairs in [S4]. To simplify notation, 
for any polynomial f(q) and n ∈ N we let

f (n)(q) = qnf(1/q).

Theorem 3.7. We have the following descent polynomials.

(a) We have

Dn([1234], [1243]) = Dn([1342], [1432]) = D(n)
n ([1243], [1432]) = D(n)

n ([1234], [1342]).

And for n ≥ 3

Dn([1234], [1342]; q) = (2n− 5)qn−2 + qn−1.

(b) We have

Dn([1423], [1432]) = D(n)
n ([1234], [1324]).

And for n ≥ 3

Dn([1234], [1324]; q) = (2n− 5)qn−2 + qn−1.

(c) We have

Dn([1324], [1432]) = D(n)
n ([1234], [1423]).

And for n ≥ 1

Dn([1234], [1423]; q) = qn−1 +
(
n− 1

2

)
qn−2.

(d) We have

Dn([1243], [1423]) = Dn([1342], [1423]) = D(n)
n ([1243], [1324]) = D(n)

n ([1324], [1342]).

And for n ≥ 1

Dn([1324], [1342]; q) = q +
n−1∑
k=2

(n− k)qk.

(e) For n ≥ 4 we have

Dn([1243], [1342]; q) = q + q2 + qn−1 + qn−2.
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(f) For n ≥ 3 we have

Dn([1324], [1423]; q) = q(1 + q)n−2.

Proof. We will only prove (a) as the others follow easily in a similar fashion from the 
descriptions of the avoidance classes in Section 2. We adopt the notation of the proof of 
Theorem 2.2.

We will use the description of the generating tree to obtain a recursion for 
Dn+1([1243], [1432]). Note that if n + 1 is inserted in site i of σ to form σ′ then

cdes[σ′] =
{

cdes[σ] if i is a cyclic descent,
cdes[σ] + 1 if i is a cyclic ascent.

Since the site before n is always active, these children will give a contribution of 
qDn([1243], [1432]) because such a site is a cyclic ascent. In δ and ε, insertion in the 
other active site gives permutations with n − 1 descents. So

Dn+1([1243], [1432]) = 2qn−1 + qDn([1243], [1432]).

It is now easy to check that the formula in (a) satisfies this recursion and is also valid 
at n = 3, completing the proof. �

For classes avoiding 3 or more patterns, we will only write down the results for those 
which are not eventually constant. The interested reader can easily compute the polyno-
mials for the remaining classes. We also content ourselves with stating the polynomial 
for one member of every trivial Wilf equivalence class since the rest can be computed 
from Lemma 3.1.

Theorem 3.8. We have the descent polynomials

Dn([1234], [1342], [1423]; q) = Dn([1234], [1324], [1423]; q) = (n− 2)qn−2 + qn−1

and

Dn([1324], [1342], [1423]; q) = q · 1 − qn−1

1 − q

for n ≥ 2. �
4. Consecutive patterns

We will now concentrate on the consecutive case. For the rest of this section, we let 
π = π1π2 . . . πk be a consecutive pattern. We will relate the number of occurrences of π
in linear permutations to the number of occurrences of [π] in cyclic permutations.
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We let oπ(σ) be the number of occurrences of π in a linear permutation σ. Similarly, 
we denote by cπ[σ] the number of occurrences of [π] in [σ]. This number is well defined, 
in the sense that it does not depend on the chosen representative of [σ], since rotating σ
simply changes the positions of the occurrences of [π], but not the actual subsequences 
or how many there are. Note also that cπ[σ] = 0 precisely if [σ] avoids [π]. For example, 
c132[25314] = 2, since [253] and [142] are occurrences of [σ] in [π]. On the other hand, 
c132[24531] = 0, so [24531] ∈ Av5[132].

We denote by

Pπ(u, z) =
∑
n≥0

∑
σ∈Sn

uoπ(σ) z
n

n!

the exponential generating function counting occurrences of a consecutive pattern π in 
linear permutations, and let ωπ(u, z) = 1/Pπ(u, z). Formulas and differential equations 
for Pπ(u, z) and ωπ(u, z), for various patterns π, have been given in [22,23], see also [29,
34,32,18] for related work.

Let

Cπ(u, z) =
∑
n≥0

∑
[σ]∈[Sn]

ucπ[σ] z
n

n! (9)

be the exponential generating function counting occurrences of [π] in cyclic permutations, 
and note that

Cπ(0, z) =
∑
n≥0

#Avn[π]z
n

n! .

As in the case of consecutive patterns in linear permutations, letting

πr = πk . . . π2π1

and

πc = (k + 1 − π1)(k + 1 − π2) . . . (k + 1 − πk),

it is clear that

Cπ(u, z) = Cπc(u, z) = Cπr (u, z) = Cπrc(u, z),

since occurrences of [π] in [σ] correspond to occurrences of [πr] in [σr], and to occurrences 
of [πc] in [σc]. For example, for patterns of length 3, we have C123(u, z) = C321(u, z) and 
C132(u, z) = C312(u, z) = C213(u, z) = C231(u, z).

For a function F (u, z), we will use F ′(u, z) to denote its partial derivative with respect 
to the variable z. Our central result in this section relates consecutive patterns in the 
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cyclic case with those in the linear case. The requirement π1 = 1 can be replaced, by the 
above symmetries, with any of π1 = k, πk = 1, or πk = k, where k is the length of π.

For the purposes of the proof we will let a permutation be any linear or cyclic 
ordering of a finite set of positive integers. Any set of cyclic permutations [Σ] =
{[σ(1)], [σ(2)], . . . , [σ(m)]} will be given weight

wt[Σ] = ucπ[σ(1)] · ucπ[σ(2)] · · ·ucπ[σ(m)],

and any linear permutation σ will be given weight wtσ = uoπ(σ). Finally, the left-right 
minima of σ = σ1σ2 . . . σn are the elements σi such that

σi = min{σ1, σ2, . . . , σi}.

These elements give rise to the left-right minima factorization of σ, which is

σ = σ(1)σ(2) . . . σ(m) (10)

where σ(i) is the factor (consecutive subword) of σ starting at the ith left-right minimum 
and ending just before the (i + 1)st.

Theorem 4.1. Let π = π1π2 . . . πk be a consecutive pattern with π1 = 1. Then

Cπ(u, z) = 1 + lnPπ(u, z).

Proof. Exponentiating the equation in the statement of the theorem, it suffices to prove 
that

Pπ(u, z) = eCπ(u,z)−1.

By the Exponential Formula (see Theorem 4.5.1 in Sagan’s book [36]), it suffices 
to show that there is a bijection φ between permutations σ ∈ Sn and sets of cyclic 
permutations

[Σ] = {[σ(1)], [σ(2)], . . . , [σ(m)]}

such that

(a)
k⊎

i=1
σ(i) = {1, 2, . . . , n}, the union being of the underlying sets of the σ(i), and

(b) wtσ = wt[Σ].

Define

φ(σ) = {[σ(1)], [σ(2)], . . . , [σ(m)]}
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where the σ(i) are the factors in (10). Then (a) holds because every element of 
{1, 2, . . . , n} must appear in exactly one of the factors of the factorization. To prove 
(b), let us show that any occurrence of π in σ is entirely contained in one of the σ(i). 
Indeed, if the occurrence overlaps two or more factors, then the left-right minimum of 
the second factor is smaller than the first element of the occurrence. This contradicts 
the fact that π begins with 1.

To show φ is bijective, we construct its inverse. Given [Σ], rotate each cyclic per-
mutation so that σ(i) starts with its minimum element. Then concatenate these linear 
permutations in order of decreasing first element to form σ. It is easy to check that this 
describes the inverse of φ. �

Expressions for Pπ = Pπ(u, z) are known for certain consecutive patterns π, often in 
the form of differential equations satisfied by its reciprocal ωπ = 1/Pπ. In fact, up to 
symmetry, all the patterns σ for which explicit differential equations have been found 
so far satisfy σ1 = 1. Thus, Theorem 4.1 can be applied to these patterns to deduce an 
expression for Cπ = Cπ(u, z).

Restating Theorem 4.1 to relate Cπ and ωπ, we have Cπ = 1 − lnωπ, from where 
C ′

π = −ω′
π/ωπ, and

ωπ = e1−Cπ . (11)

In some cases, this relation allows us to obtain differential equations directly in terms of 
Cπ, as we will see below.

It is proved in [22, Theorem 3.1] (see also [23, Theorem 2.1]) that, for π = 12 . . . k
with k ≥ 3, the function ωπ = ωπ(u, z) satisfies the differential equation

ω(k−1)
π + (1 − u)(ω(k−2)

π + · · · + ω′
π + ωπ) = 0 (12)

with initial conditions ωπ(u, 0) = 1, ω′
π(u, 0) = −1, and ω(i)

π (u, 0) = 0 for 2 ≤ i ≤ k − 2. 
In [23, Theorem 2.4], similar differential equations are given for ωπ whenever π is 
a so-called chain pattern (see [23, Definition 2.2]). Chain patterns generalize mono-
tone patterns, but they still satisfy π1 = 1 (up to symmetry), as shown in [23, 
Lemma 2.3]. Thus, for all such patterns π, Theorem 4.1 can be used to determine 
Cπ = 1 − lnωπ.

It is possible to rewrite (12) as a differential equation for Cπ using the identity (11). 
For example, when k = 3, we obtain the following.

Corollary 4.2. Let R = R123(u, z) = C ′
123(u, z). Then R satisfies the differential equa-

tion

R′ = R2 + (u− 1)(R− 1) (13)

with initial condition R(u, 0) = 1. An explicit expression is given by
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R123(u, z)

= 1
2

(
1 − u− tanh

(
z
√
u2 + 2u− 3

2 − arctanh
(

u + 1√
u2 + 2u− 3

))√
u2 + 2u− 3

)
,

which, for u = 0, simplifies to

R123(0, z) = 1
2 +

√
3

2 tan
(√

3
2 z + π

6

)
.

Proof. Differentiating Equation (11), we get ω′
π = −C ′

π e
1−Cπ and ω′′

π =
(
−C ′′

π +
(C ′

π)2
)
e1−Cπ . Substituting these expressions into Equation (12) for k = 3, and divid-

ing both sides by e1−Cπ , we obtain Equation (13). �
Setting u = 0 in Equation (13) gives

R′
123(0, z) = R123(0, z)2 −R123(0, z) + 1, (14)

proving a conjecture from an earlier version of this paper. For k = 4, a similar compu-
tation yields the following.

Corollary 4.3. Let R = R1234(u, z) = C ′
1234(u, z). Then R satisfies the differential equa-

tion

R′′ = 3R′R−R3 + (u− 1)(R′ −R2 + R− 1) (15)

with initial conditions R(u, 0) = 1, R′(u, 0) = 1. For u = 0, an explicit expression is 
given by

R1234(0, z) = cos z + sin z + e−z

cos z − sin z + e−z
.

In the case of linear permutations, explicit expressions for P123(u, z), P123(0, z) and 
P1234(0, z) have been given in [22, Theorems 4.1 and 4.3]. Let us also point out that, for 
σ = 12 . . . k, the generating function Rπ = C ′

π coincides with the generating function 
denoted by R in the proof of [22, Theorem 3.1].

A consecutive pattern π of length k is called non-overlapping if two occurrences of 
σ cannot overlap in more than one position; in other words, there is no permutation 
σ ∈ S2k−2 with oπ(σ) ≥ 2.

Generalizing [22, Theorem 3.2], it is shown in [23, Theorem 3.1] that, for any non-
overlapping consecutive pattern π of length k ≥ 3 with π1 = 1, the function ωπ = ωπ(u, z)
satisfies the following differential equation, where b = σk:

ω(b)
π + (1 − u) zk−b

ω′
π = 0, (16)
(k − b)!
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with initial conditions ωπ(u, 0) = 1, ω′
π(u, 0) = −1, and ω(i)

π (u, 0) = 0 for 2 ≤ i ≤ b − 1. 
Again, by Theorem 4.1, this determines Cπ = 1 − lnωπ for all such patterns. In this case, 
the generating function C ′

π coincides with the generating function denoted by R in the 
proof of [22, Theorem 3.2].

In the case b = 2, rewriting (16) as a differential equation for Cπ using (11) and its 
derivatives, we obtain the following.

Corollary 4.4. Let π be a non-overlapping pattern of length k ≥ 3 with π1 = 1 and πk = 2, 
and let R = Rπ(u, z) = C ′

π(u, z). Then R satisfies the differential equation

R′ = R2 + (u− 1) zk−2

(k − 2)! R (17)

with initial condition R(u, 0) = 1. An explicit expression is given by

Rσ(u, z) = e(u−1) zk−1
(k−1)!

1 −
∫ z

0 e(u−1) tk−1
(k−1)! dt

,

or equivalently,

Cπ(u, z) = 1 − ln

⎛⎝1 −
z∫

0

e(u−1) tk−1
(k−1)! dt

⎞⎠ .

Setting u = 0 in Equation (17) for k = 3 gives the equation

R′
132(0, z) = R132(0, z)2 − zR132(0, z).

Dividing both sides by R132(0, z), integrating, and using that R132 = C ′
132, we obtain 

lnC ′
132(0, z) = C132(0, z) − z2/2, or equivalently,

C ′
132(0, z) = eC132(0,z)−z2/2, (18)

proving a conjecture in an earlier version of this paper.
In [23], differential equations are also given for ωπ(u, z) when π is any of 1324, 12534, 

or 13254. For each of these patterns, Theorem 4.1 can again be applied to obtain Cπ(u, z).

5. Open problems and concluding remarks

We collect here various areas for future research in the hopes that the reader will be 
interested in pursuing this work.
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5.1. Longer patterns

There has been very little work about containment and avoidance for cyclic patterns 
of length longer than 4. Of course, the cyclic Erdős–Szekeres Theorem, Theorem 1.3
above, is one such result. There is also a paper of Gray, Lanning and Wang [27] where 
the authors consider cyclic packing (maximizing the number of copies of a given pattern 
among all the permutations [σ] ∈ [Sn] for some n) and superpatterns (permutations 
containing all the patterns [π] ∈ [Sk] for some k). It would be interesting to see if there 
are nice enumerative formulas for classes consisting of cyclic patterns of length 5 and 
up.

5.2. Other statistics

One could study other cyclic statistics. For example, the peak set of a linear permu-
tation is

Pk π = {i | πi−1 < πi > πi+1}

with corresponding peak number

pk π = # Pk π.

Peaks are an important part of Stembridge’s theory of enriched P -partitions [40] where 
P is a partially ordered set. On the enumerative side, the study of permutations which 
have a given peak set has been a subject of current interest [5–7,11,14–16]. Now define 
the cyclic peak number to be

cpk[π] = #{i | πi−1 < πi > πi+1 where subscripts are taken modulo n}.

As with cdes, this is well defined since it is independent of the choice of representative 
of [π]. There should be interesting generating functions for the distribution of cpk over 
avoidance classes, or even for the joint distribution of cdes and cpk. As evidence, we 
prove one such result.

Theorem 5.1. For n ≥ 3∑
[σ]∈Avn([1234],[1342])

qcdes[σ]tcpk[σ] = qn−2t + (2n− 6)qn−2t2 + qn−1t.

Proof. Let Fn(q, t) denote the desired generating function. We proceed as in the proof 
of Theorem 3.7 (a) to find a recursion for Fn+1(q, t). Since the largest element of [σ]
is always a cyclic peak, inserting n + 1 before n does not change cpk. So this con-
tributes qFn(q, t) to the recursion. For δ and ε, inserting n + 1 in the other active site 
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increases the number of peaks to 2. So the contribution from these cases is 2qn−1t2. In 
summary

Fn+1(q, t) = 2qn−1t2 + qFn(q, t)

and the desired polynomial is easily seen to be the solution. �
In a recent paper Adin, Gessel, Reiner, and Roichman [1] defined a cyclic analogue of 

the Hopf algebra of quasisymmetric functions. In this context the cyclic descent set of 
a linear permutation arises naturally in the description of the product in this algebra. 
They also raise the following intriguing question.

Question 5.2. Find an analogue of the major index for cyclic permutations that has nice 
properties, such as a generating function over [Sn] which factors nicely as does the 
generating function for the ordinary major index over Sn.

5.3. Vincular patterns

We will show how one vincular class is enumerated by the Catalan numbers. As 
remarked in the introduction [31], Li has continued our work with an extensive study of 
vincular pattern avoidance.

Theorem 5.3. We have

[1324] ≡ [1423] ≡ [1324] ≡ [2314].

And for n ≥ 1

# Avn[1324] = Cn−1.

Proof. The Wilf equivalences are trivial. To prove the Catalan formula, suppose that 
[σ] ∈ Avn[1324] for n ≥ 2 and write σ so that σn = n and σn−1 = m for some m ∈ [n −1]. 
First notice that σ = ρτmn where ρ and τ are permutations of [m +1, n −1] and [m −1], 
respectively. For if there are x < m < y < n with x before y in σ then [xymn] is a 
copy of [1324]. Furthermore, it is clear that [mρ] and [τm] must avoid the forbidden 
pattern.

We claim the if σ = ρτmn where ρ and τ obey the restrictions of the previous 
paragraph then [σ] avoids [1324]. Suppose, towards a contradiction, that a copy [κ] =
[wyxz] exists with wyxz order isomorphic to 1324. Consider the elements x and z which 
play the roles of 2 and 4. The possibility that they are m and n, respectively, is ruled 
out by the fact that every element of ρ is larger than every element of τ . If z ∈ τm

then all of κ must be in this subsequence since z is the largest element of the copy. 
But this is impossible since [τm] avoids the bad pattern. Finally, suppose z ∈ ρ. This 
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forces x ∈ ρ since it comes cyclically just before z, and n is too large to be x. We must 
also have y ∈ ρ since x < y < z. But now there is no possible choice for w. Indeed, if 
w ∈ [mρ] then [κ] is in this subsequence, contradicting our assumption. And if w ∈ τ

then it could be replaced by m since x, y, z > m, yielding the same contradiction as 
before.

From the first two paragraphs we immediately get the recursion

# Avn[1324] =
n−1∑
m=1

# Avm[1324] · # Avn−m[1324].

From this the Catalan enumeration follows by induction. �
For the case of consecutive patters, a natural problem for further research would be 

to find Cπ(u, z) for consecutive patterns π that do not begin with 1 (even after applying 
the basic symmetries).

In a different direction, it is shown in [19] that, for n large enough, the number of 
(linear) permutations in Sn that avoid a consecutive pattern π of length k is largest 
when π is a monotone pattern, and it is smallest when π = 12 . . . (k − 2)k(k − 1) (or any 
of its symmetries). One could ask if there is an analogue of this theorem for consecutive 
patterns in cyclic permutations.
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